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Directed Polymers in Hartree-Fock Approximation 

Yi-Cheng Zhang 1 

Received May 24, 1989; revision received July 20, 1989 

A replica trick is used to map the problem of directed polymers into a quantum 
mechanics problem of n-body bound states. This bound-state problem is then 
treated using a self-consistent method of Hartree-Fock. For d=2, the exact 
result of the DP exponents is reproduced; and for complex DP, the ground-state 
energy E n ~ n 2 is found, confirming previous numerical results. 
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The problem of directed polymers (DP) in random media has recently 
drawn considerable attention. (1) The DP  problem is related to the Burgers' 
equation in fluid dynamics, (2) to that of domain walls in the 2d random 
bond Ising model, (3) and to surface growth. (4) 

The model can be defined in a Feynman path integral form: 

W ( x , t ) = ~ x ' ~ ) ~ x e x p _ f ~  d~ [~  {dx'~ 2 
~0,0~ \d~J + V(x(~), ~)] (1) 

where W(0, 0 ) =  1, and V(x, t) is a quenched random potential, or disor- 
der, which obeys V(x, t )V(x ' ,  t ' ) = 2 6 ( x - x ' ) 6 ( t - t ' ) ,  where the overbar 
denotes the sample average. The above expression is a sum over all 
possible oriented (in the t direction) paths that connect (x, t) to (0, 0), with 
due random weights along each path. 

In contrast to the disorder-free, or pure case, the "wave packet" 
W(x, t) is not symmetric with respect to the geometric center x = 0, for any 
given single sample. One is thus interested in its transverse deviation, 
defined as Xc = [ (x)1,  where ( . )  denotes the average using the normalized 
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probability density P(x, t) = W(x, t) S dy W(y, t). One expects x C to be a 
scaling function of t, Xc ~ F. 

A generalization of the DP problem is to consider the complex 
random amplitude exp - i V ( x ,  t) in place of exp - V(x, t), and the quan- 
tity of interest is [W(x, t)[ 2 in place of W(x, t), in Eq. (1). Hence the model 
is called the complex DP, or CDP problem. (5'6) It has applications in the 
study of hopping conductivity (7) and electron or light transmission through 
random media. 

For short-range, correlated disorder, the scaling exponents for the DP 
problem are known analytically only for the d =  2 case; those for all other 
cases (including d = 2  CDP) are only available from direct or indirect 
numerical simulations. Nevertheless, there is an established exponent 
relation (8) v = (1 + (0)/2, where co is the scaling exponent of the free energy 
fluctuation: F ( t ) = - l n  [W(0, t)t can be called free energy, which varies 

from sample to sample; its fluctuation is [AF(t)]2= [ F ( t ) - F o ] 2 ~ t  2~~ 
where Fo = F(t). 

There is a way to obtain the exponent co analytically. To this end, we 
need to consider the moments W"(0, 0) [here and below [W(0, 0)[ 2" for 
CDP] ,  for arbitrary positive integer n. This is essentially a replica trick. 2 
Our disordered DP and CDP models are thus mapped onto ( d -  1)-dimen- 
sional quantum mechanical, n-body bound-state problems. (6'1~ 

In anticipation of the bound-state energy result, we may express 
W n = e x p - t E o ( n ) ,  where the ground-state energy is E o ( n ) ~ - n  ~, for 
asymptotically large t and n. From the knowledge of these moments, we 
can reconstruct the probability distribution function (5) of the free energy 
F(t), 

I F _  Fo[,) 
P ( F ) ~ e x p - a  t~/~ j (2) 

where t t=/?/( /3-1) ,  /~> 1, a is a constant. From it we deduce that 
A F ~  t 1/~, or the desired exponent e) = 1//?. The aim of this note is to show 
a new way of estimating the bound-state energy exponent/~ [hence co = 1//~ 
and v--(1 + 1//~)/2]. Note that in general Eo(n) contains subleading terms 
in n, which depend normally on the schemes or approximations employed. 
However, it is clear from the above discussion that only the leading term 
in n determines the scaling behavior. This is to be contrasted with the tradi- 
tional replica trick, where the opposite limit n ~ 0 is assumed. 

Our problems are reduced to finding the ground-state energies of the 
Schr6dinger equations; the number of particles n is assumed to be large 

2 See ref. 9 for a somewhat different approach, where bound-state problems are also discussed. 
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and here we consider the d = 2  cases only. For the DP problem all n 
particles are subject to mutual attractive interaction; we have 

{-- ~ 0 3-  ~ 6(xi-xj)} ~(xl,...,xn)=Eo(n) ~J(Xl,...,Xn) (3) 
i ~ l  i > j  

For the d =  2 case it has been solved ~1~ using Bethe ans~itze, and it was 
found that Eo(n)~-n 3. For the CDP case, we have the analogous 
equation (6) 

t - ~  ~ + ~  eiej6(xi-xj)t~(x 1 ..... xn)=Eo(n)~(xl,...,xn) (4) 
I ) i = 1  i > j  

where ei can be considered the charge (via the contact interaction, though) 
of the ith particle: e i=  1 for 1 <~i<~n and e ,=  - 1  for n<~i<~2n. Thus, for 
the CDP problem the total system is charge-neutral; bound states can be 
formed through dipolar and multipolar interactions. I have tried to 
diagonalize this Hamiltonian along the lines of the traditional Bethe ansatz 
approach, like that for the DP  case, without success. Below I want to 
follow an alternative approach, tackling both problems on equal footing. 

Here a Hart ree-Fock approximation can be introduced to solve the 
above equations for d = 2 .  For  details of its application to the above 
n-body attraction problem see a recent textbook,(~l) where comparison was 
made between the exact Bethe ansatz solution and that of the HF mean 
field approximation-- they agree to the leading order in n. This is a conse- 
quence of a more general conclusion of 1/n expansion. (1~) I outline the 
precedure below. For  n attracting particles one can define a single-particle 
wave function q~(x), which should satisfy the self-consistent equation 

{ -c3 2 - (n - 1)I~b(x)l 2 } ~b(x) = e~b(x) (5) 

with the normalization condition ~dx I~(x)12= 1, and the boundedness 
requirement ]~b(x -~ _+ov)] -~ 0; e denotes the (bound) ground-state energy 
of a single particle, and Eo(n)= he. In the following I will only keep the 
leading order in n, hence in the above equation n -  1 will be replaced by 
n. The above equation is integrable and has the normalizable soliton 
solution 

(k(x) ~ +-nl/Z/cosh(nx) (6) 

only when ~2) e = - n  2. Thus, we obtain the result Eo(n ) = - n  3, in agree- 
ment with the exact Bethe ansatz solutionJ ~~ The above soliton solution 
shows that the typical physical size R of the bound state is R ~ 1In. Recall 
that in the original n-body bound state problem, if n particles are confined 
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in a (small) region R, the total kinetic energy ,,~n(1/R) 2 opposing the 
collapse should be of the same order of magnitude as the ground-state 
energy ~ - n  3. The above solution is consistent with this expectation. 

For the CDP case, or Eq. (4), it is not as easy to write down the 
Hartree-Fock self-consistent equation for a single wave function. We need 
more physical insight. In Eq. (4) we have n positive charges and n negative 
charges; they can form a boundstate because they cannot screen each 
other's charges completely. Two particles of opposite charges can be bound 
into a pair by the direct attraction, two such pairs can be bound together 
by a dipolar (attractive) interaction, groups of more particles can be bound 
together by multipolar attractions, and so on. However, the interaction 
strength (or coupling constant) per particle for a bound state of larger 
number of particles is weaker; this is due to the aforementioned charge 
screening. Since we are only interested in the final bound state of the 2n 
particles, it suffices to ask what is the necessary interaction strength per 
particle for this case. 

Let us split the total 2n charges into two separated groups, in an 
arbitrary way, so that each contains ~ n  charges. As a consequence of the 
central limit theorem, each group contains ~ ~ unpaired excess charges 
(the two groups have opposite signs, due to charge conservation). It is 
these excess charges that are solely responsible for holding the 2n charges 
bound. Nor knowing exactly which particle actually contributes to these 
excess charges, we assume that they can be thought of arising uniformly 
from all the particles ,-~n, each contributing ~ 1/~/-n. This assumption is 
consistent with the philosophy behind the Hartree-Fock approximation. 

This can be also seen from another perspective: Among the 2n 
particles, there a r e  n 2 attractive bonds (pairs) between opposite charges; 
n ( n -  1) repulsive bonds between like charges. As a result, there are n net 
attractive bonds, which can be redistributed among the 2n particles, each 
having an effective strength ~ 1/x/n. 

The above reasoning helps us to identify the leading order (in n) 
contribution; hence the conclusions that follow are valid only for large n. 

A single particle is again immersed in the field of the ~ n  other par- 
ticles, but with a smaller coupling constant ~ 1/x/-~ than that ( = 1) of the 
DP case. All we need to change in Eqs. (5) and (6) is to replace the factor 
n by x/-s The self-consistent equation for this case should be 

A O ( x  ) -? nl /Zqj(x)  3 - t O ( x  ) = 0 (7) 

The discussion which leads to this equation shows that it is straightforward 
to conclude that e = n  or Eo(n)= - n  2. The soliton solution 
q}(x) ~ - t -n l /4 / cosh (n l /Zx )  shows that the bound state now has a physical 
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extension of R ~ 1/x~.  The kinetic energy n(1/R) 2 is of the same order as 
Eo(n). Note that R for CDP is larger than that of the DP case, consistent 
with the present general argument. The bound-state energy exponent fl = 2 
for d =  2 CDP implies that the exponent v=  3/4, which was previously 
conjectured on the basis of direct numerical simulations. (5"6~ 

I have not discussed how to generalize the above approach to d >  2 
cases. There are difficulties in doing so: First, using a spherical approxima- 
tion to study an effective one-dimensional nonlinear Hartree-Fock equa- 
tion is far from being justified--there are indications that particles inside 
the bound states follow some singular distribution; assumptions of 
homogeneity and isotropy of particle distribution are suspicious. Even 
assuming spherical symmetry, i.e., q~(x)= q~(r), the resulting Hartree-Fock 
equation 

__Or 2 __ d--___22 8 r - - ( n -  1)I~b(r)[ 2} ~b(r)-- z~b(r) (8) 
r 

is not integrable. The second term in (8) can be regarded as "dissipative," 
which spoils the solvability. It can be shown the above equation may not 
have any solution at all, not even numerically. Only for a discrete set of 
parameters can numerical solutions be found. (12/ 

For d >  2 DP cases here are plenty of numerical results for the related 
problem of surface growth, which can be readily transcribed here for our 
bound state problems. The initial numerical simulations lead to the so- 
called superuniversality hypothesis, i.e., Eo(n)~  - n  3 for all d. Later, there 
were more careful numerical simulations on the related surface growth 
equation, most notably those by Wolf and Kert6sz (13~ (WK), and very 
recently by Kim and Kosterlitz (~4~ (KK). Based on numerical results, WK 
conjecture that (in the present notation) COpy= 1/ (2d-1) ,  while the new 
results of KK indicate coDv=l / (d+ 1). The subscript denotes that the 
exponent is for the DP case. One curious feature shared by both conjec- 
tures is that the related bound-state exponent /~ assumes only integer 
values. For the dimensionalities d = 2 ,  3, 4,..., according to WK, /~Dp= 
3, 5, 7,..., and according to KK, flDv = 3, 4, 5 ..... These integer solutions are 
aesthetically very appealing, especially considering that, when the above 
authors proposed them, they were not biased by our bound-state problems. 

Which one of the above numerical conjectures for the d > 2 D P  
problem may well turn out to be exact, future numerical as well as analyti- 
cal work may decide. What can one say for the corresponding CDP 
problem? From the previous discussion on the Hartree-Fock approxima- 
tion, one may expect that the bound-state energies of the CDP and DP 
problems are related in the following way: the bound-state energy for DP 
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is - n  ~Dp, which can be rewri t ten as - n . n  ~Dp 1, where the factor  n is 
singled out  for the par t ic le  number .  I p ropose  tha t  the bound-s t a t e  energy 
for C D P  should  be - n .  n (~bP- 1)/2. In  other  words,  it should  be ~ - n  ~cDP, 

f l C D p = l + ( f l D p - - 1 ) / 2 .  I have used the fact that  the above  a rgument  
leading  to the d - -  2 C D P  result,  that  the in terac t ion  s t rength is t / x / ~  per  
part icle,  does no t  depend  on the d imens iona l i ty  d. However ,  while for the 
d =  2 case one can just i fy this re la t ion by f inding a self-consistent solut ion,  
for the d > 2  cases the re la t ion can be only cons idered  a speculat ion.  

F r o m  this conjec tured  flcDe, one can deduce two o ther  exponents ,  

0)CDP----2/(I-+-flDp) and V c D P = ( B + f l D p ) / [ 2 ( l + f l D p ) ]  for complex  
polymers ,  where  flDP can assume the above  values, conjec tured  f rom 
numer ica l  work.  
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